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Abstract— A perfectly matched layer (PML) is implemented
using the finite element method (FEM) to successfully terminate
the output port of a parallel-plate waveguide operating over
a wide range of frequencies. ' The PML layer is modeled as a
nonphysical anisotropic lossy material backed with a perfect elec-
tric conductor (PEC). Numerical results showing the reflection
coefficient as a function of frequency, for both TEM and TM;
propagation modes, demonstrate the effectiveness and accuracy
of the PML concept as applied in the context of the FEM.

1. INTRODUCTION

HE FINITE element method (FEM) is a very versatile and

powerful numerical technique for solving electromagnetic
propagation problems. The capability to accurately model
geometrical and material complexities provides the method
with a great advantage over other numerical techniques such
as the method of moments (MoM) or the finite-difference time-
domain (FDTD) method. However, the FEM faces a large
number of challenges, such as an accurate and numerically
efficient termination of the finite element mesh that would still
simulate undisturbed wave propagation in a given medium.

The recently developed perfectly matched layer (PML) [1],
which was mainly implemented in the context of the finite-
difference time-domain (FDTD) technique [2]-[4], resulted in
a significant improvement over other previously used absorb-
ing boundary conditions (ABC’s) in reducing reflections due
to mesh truncation. The required computational resources have
also significantly declined since the PML interface can be
placed much closer to a physical structure compared to other
well known ABC’s.

Although the PML concept had an incredible impact in
modeling electromagnetic wave propagation problems using
the FDTD method, the idea has not yet been adopted widely
in modeling similar problems using the FEM. An FEM im-
plementation of the PML concept, as applied to scattering
problems, was recently published by Pekel and Mittra [5].
More recently, a paper written by Sacks er al. [6] introduced
the PML absorbing boundary condition in calculating far-
field radiation patterns of a single dipole. However, none of
the above quantifies the numerical error introduced due to
terminating the finite element mesh with a PML region.
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Fig. 1. Parallel-plate waveguide terminated with a PML absorbing boundary

condition,

This letter formulates the PML in the context of the FEM
as applied to two-dimensional (2-D) waveguide structures.
The main idea is to model the PML medium as a uniaxial
anisotropic lossy material. According to Berenger [1], the
only restriction on the properties of the material is that the
condition o/eq = 0*/uq is satisfied, where o is the electric
conductivity, ¢* is the magnetic conductivity, and ¢; and
tq are the permittivity and permeability of the PML region,
respectively.

A parallel-plate waveguide, shown in Fig. 1, is excited
with either a TEM or TM; mode. The reflection error due
to a PML termination is quantified by calculating the reflec-
tion coefficient of an empty waveguide using various mesh
discretizations. Obtained results for the reflection coefficient
illustrate the effectiveness of the PML medium using the FEM
as compared to previously published data using the FDTD
method [4], [7].

II. THEORY

The electric field vector equation given by
Vx(ut VxE)—k¥,E=0 (1)

is broken down into two different partial differential equations:
one describing the longitudinal electric fields (TM; mode)
and the other describing the transverse electric fields (TEM
mode). The permittivity and permeability tensors. ¢, and ;:L,q
are 2 x 2 block matrices and, as a result, the two equations
are completely decoupled from each other. In addition, the
fields are invariant in the longitudinal (z-axis) direction. The
resulting decoupled integral equations are the following:

/ / (Ve x E0)5(Ve x Bo)* — KB, 6, EdY =0 (2)
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where V; is the transverse del operator, E; is the transverse
component of the electric field, and F, is the longitudinal
component of the electric field. The tensor ﬁr, referred to as
the relative pseudo-permeability, has also been introduced and
is defined as

N A
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The transverse fields, E;, are expanded in terms of linear edge-
based triangular elements, whereas the longitudinal fields,
E,, are expanded in terms of linear nodal-based triangular
elements.

A parallel-plate waveguide, shown in Fig. 1, was chosen
in this letter to investigate and quantify the reflection error
due to the PML termination. The main reason for selecting
such a geomelry is because 2-D problems are usually more
intuitive and informative. The parallel-plate waveguide is
excited either with a TEM mode or a TM; mode, where
the latter exhibits a cutoff frequency at f = ¢/2b. The
mixed boundary condition at the input port assumes that
only the dominant mode is propagating inside the waveguide,
whereas the output port is terminated with a PML region of
depth d. The PML region is subsequently subdivided into N
layers, each defined with a different electric and magnetic
conductivity. The corresponding conductivities are given by

ola) = (BFDeotrC (}%) (‘” _d“’) (5)
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where m is the order of the spatial polynomial, R is the
desired reflection coefficient at normal incidence, and x, is the
position of the PML interface (assuming that the interface lies
on the yz-plane). The relative permittivity and permeability
tensors of a PML layer that is oriented such that it maximizes
absorption of waves traveling in the z-direction are given by
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respectively. The tensor formulation described above naturally
causes a rapid decay of electromagnetic fields traveling in the
z-direction. In addition, it is important to mention here that
although the effectiveness of the PML medium is independent
of the incident angle #, terminating it with a perfect electric
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TABLE I
MEsH INFORMATION FOR THE CASE WHERE N = 10 AnD d = 20 mm
Mesh # | # of Triangles | # of Edges | # of Nodes
1 5,175 7,872 2,698
2 11,339 17,169 5,831
3 22,571 34,084 11,514
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Fig. 2. Reflection error due to the PML termination for various finite element
discretizations—N = 10, d == 20 mm, m = 2, R = 1.0E — 4, TEM mode.

conductor results in an angle-dependent reflection coefficient
of the form [1]

R(8) = R(0)5®), ©)

III. RESULTS

The first case considered was an empty parallel-plate wave-
guide with wall separation of b = 40 mm. The output port
was terminated with a ten-layer PML medium of total depth
equal to 20 mm. The waveguide was excited with two different
modes: a TEM mode, which exhibits no cutoff frequency,
and a TM; mode with f. = 3.75 GHz. Three different dis-
cretizations (see Table I) were considered. The corresponding
reflection coefficient [20 log (S11)] as a function of frequency,
for both cases of excitation, is illustrated in Figs. 2 and 3. It
is interesting to see that at lower frequencies the reflection
coefficient reaches levels as low as —75 dB with the trend of
reducing it even further by additional refined discretization.
In Fig. 3, it is shown that the reflection coefficient increases
rapidly at frequencies close to cutoff. This is something
expected, however, since close to cutoff the wave propagates
very slowly, whereas at cutoff the wave does not propagate
at all. It is also important to emphasize that the reflection
coefficient shown in Figs. 2 and 3 is a combined effect due
to a reflection from the PML medium as well as the finite
element discretization. The latter explains the increasing slope
of the reflection coefficient versus frequency (note that the
discretization error is of order A2 where A is the maximum
triangle edge).

The PML medium was also parameterized by plotting the
reflection coefficient as a function of frequency for different
values of the spatial polynomial order as in (5) and (6). Fig. 4
demonstrates that by increasing the order of the polynomial,
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Fig. 3. Reflection error due to the PML termination for various finite element
discretizations—N = 10, d = 20 mm, m = 2, R = 1.0E — 4, TM; mode.
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Fig. 4. 'The effect of the spatial polynomial order on the reflection error due
to the PML termination—Mesh #3, N = 10, d = 20 mm, R = 1.0F — 4,
TEM mode.

the reflection coefficient increases in the lower frequency
range, whereas at higher frequencies the finite discretization
effect dominates. In other words, the variation in the reflection
coefficient due to changing the order of the spatial polynomial
becomes increasingly smaller than the discretization error as
the frequency of operation approaches higher values.

Another case of parameterization is to change the number
of layers comprising the PML medium while keeping the total
depth of the PML region constant. Fig. 5 shows the reflection
coefficient versus frequency for three different values of N.
The results illustrate that increasing the number of layers from
N = 4 to N = 16, while keeping all other parameters
constant, does not have a significant effect on the reflection
coefficient. Note that for all three cases shown in Fig. 5 the
domain discretization was kept the same.

IV. CONCLUSION

The PML absorbing boundary condition was implemented
in a 2-D finite element formulation to' solve waveguide prop-
agation problems over a wide frequency range. The PML
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Fig. 5. The effect of increasing the number of layers, /N. while keeping
the depth of the PML region constant—Mesh #3, m = 2. d = 20 mm.
R = 1.0F — 4. TEM mode.

medium was modeled as a uniaxial anisotropic lossy material.
A reflection error as low as —75 dB, which at low frequencies
is attributed primarily to the PML termination, was shown for
both cases (TEM and TM; modes) of waveguide excitation.
Further improvement of the perfectly matched layer can be
achieved by investigating the variation of the reflection error
versus frequency for various parameters such as the depth of
the PML region, the number of layers, the spatial polynomial
order, etc. Additional parameterization of the PML absorbing
boundary condition needs to be conducted.
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